Multisectoral approaches as a tool to determine the impact of social determinants of health:

Linking SARS-CoV-2 wastewater and clinical epidemiology with socioeconomic indicators

GISSA Gauteng Meeting 06 March 2025

Yashena Naidoo; Fiona Els; Gillian Maree; Laven Naidoo

City-Region Observatory

The Gauteng City-Region Observatory (GCRO)

Who we are and what we do

- **GCRO helps to build the knowledge base** that government, business, labour, civil society and residents all need to shape appropriate strategies that will advance a competitive, integrated, sustainable and inclusive Gauteng City-Region.
- **GCRO is an institutional collaboration** between:
 - University of Johannesburg (UJ),
 - University of the Witwatersrand (Wits),
 - Gauteng Provincial Government, and
 - Organised local government in Gauteng
- A purpose-designed vehicle for **policy-oriented research**.

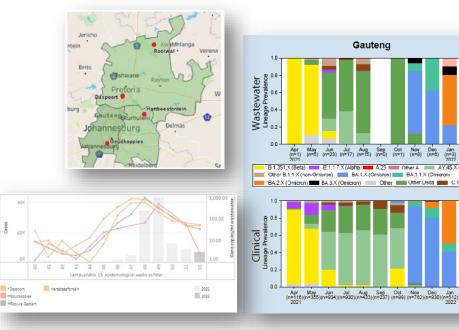
Introduction

Project history

- GCRO was extensively involved in response planning and research for Gauteng Provincial Government during the pandemic
 - Had access to Gauteng linelist data for a time and could see some spatial and social trends as well as issues with the data
 - Most outputs available: https://gcro.ac.za/research/project/detail/respondingcovid-19-pandemic-gauteng/
 - Collected QoL data on the impact of the pandemic on respondents an households. Published as GCRO databrief
- Approached by NICD early 2022 to help understand socio-economic dynamics of wastewater surveillance for WRC funding proof of concept project
- Later in 2022 BMGF funding received for 3 year period in partnership with London School of Hygiene and Tropical Diseases, SACEMA, NICD and GCRO

What is wastewater-based epidemiology?

- Wastewater-based epidemiology (WBE) is a complementary surveillance tool that supports clinical surveillance
- WBE has shown correlation with clinical case levels of SARS-CoV-2 and several use-cases exist
 - entrance of virus into a community
 - early warning
 - correlation with burden and distribution of disease
 - genomic characterisation of circulating population strains
- However, as patient level testing rates decrease, public health and disease experts are more reliant on WBE to gain insight into population burden of disease
- In the light of the above, we are looking at the relationship between WBE, clinical surveillance and population demographics/socioeconomic indicators in order to better interpret WBE findings
- There are few examples interrogating the above relationships, and none in LMICs

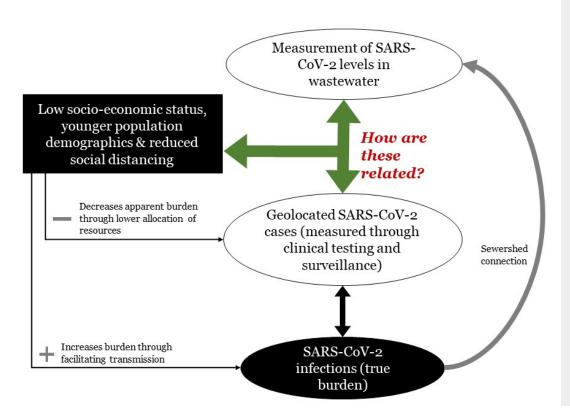

What is wastewater-based epidemiology?

- Wastewater-based epidemiology (WBE) is a complementary surveillance tool that supports clinical surveillance
- WBE has shown correlation with clinical case levels of SARS-CoV-2 and several use-cases exist
 - entrance of virus into a community
 - early warning
 - correlation with burden and distribution of disease
 - genomic characterisation of circulating population strains
- However, as patient level testing rates decrease, public health and disease experts are more reliant on WBE to gain insight into population burden of disease
- In the light of the above, we are looking at the relationship between WBE, clinical surveillance and population demographics/socioeconomic indicators in order to better interpret WBE findings
- There are few examples interrogating the above relationships, and none in LMICs

Wastewater-based epidemiology: a new complementary for communicable disease surveillance

During the COVID-19 pandemic, wastewaterbased epidemiology proved to be a helpful complementary tool to support clinical surveillance for SARS-CoV-2 in South Africa and globally.

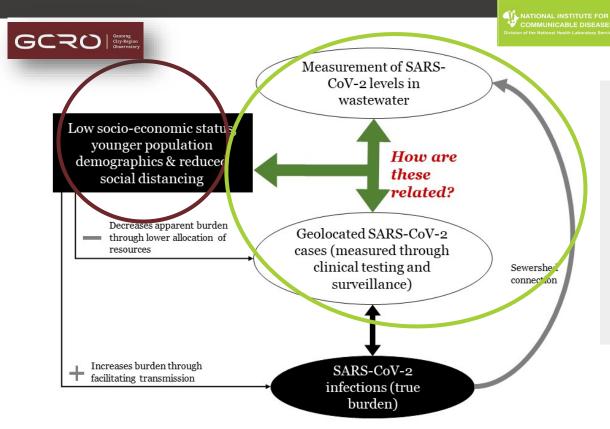
- Wastewater levels of SARS-CoV-2 track clinical case burden
- Case burden can be inferred
- Increases in wastewater levels predict increases in clinical cases.
- Genomic variants of SARS-CoV-2 can be identified in wastewater and signs of new variants detected



Iwu-Jaja et al, Science of the Total Environment, 2023

Yousif et al, Nature communications, 2023

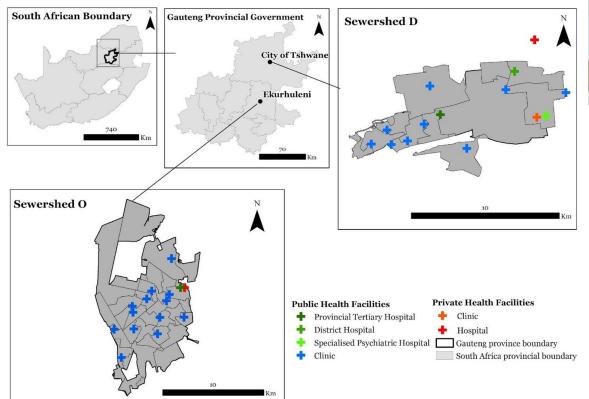
Research is expanding to monitor for other pathogens (Influenza A & B, Hepatitis A & E, measles and rubella)


Conceptual framework indicating the relationship between key variables to understand true burden of disease from wastewater

We want to understand:

- 1. Demographic, socioeconomic and health characteristics
- SARS-CoV-2 clinical data: testing, incidence and positivity rate
- 3. Relationship between clinical case data and socioeconomic status
- 4. Quantitative SARS-CoV-2 surveillance in wastewater and relate to clinical data
- 5. Comparison of estimated (wastewater) and actual SARS-CoV-2 case burden

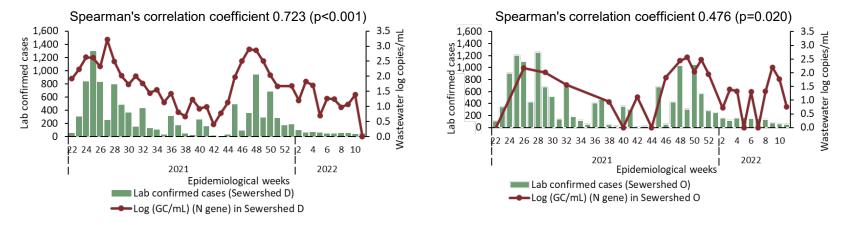
Conceptual framework indicating the relationship between key variables to understand true burden of disease from wastewater



- We set up a collaboration to bring together
 - GCRO Quality of Life survey data
 - GCRO mapping and analytic expertise
 - NICD geolocated SARS-CoV-2 case data and SARS-CoV-2 wastewater data
 - NICD surveillance epidemiological experience

Sewersheds: Monitoring wastewater for SARS-CoV-2

Methods: Wastewater reticulation maps in case-study areas



	Sewershed D	Sewershed O	
Sewershed area	61.99km ²	120.69km ²	
Total population	245,935	905,996	
Population density	3.97 people per km ²	7.51 people per km ²	
Number of wards	15	28	

SARS-CoV-2 concentrations in wastewater in log-transformed genome copies per millilitre (right axis) and the number of laboratory-confirmed cases in the sewershed by epidemiological week for sewersheds D (left) and O (right).

	Sewershed D	Sewershed O	
Total Population (people/km²)	245,935 (3.97)	905,996 (7.51)	
Quality of Life	64	59 15,293	
Total recorded SARS-COV-2 cases	11,026		
Mean positivity rate (%, sd)	17 (12.8)	14 (9.9)	
Cumulative incidence rate (cases /100 000 population)	4483.3	1,688.0	
Testing rate (tests/100 000 population)	23,696	10,580	

- Wastewater concentrations (log genome copies per millilitre) for both sewersheds ranged between 0.5 and 3,5 log copies/mL and were at similar concentrations.
- The two catchments followed a similar pattern and case count over time for laboratory-confirmed cases despite there being very different population sizes in the two catchments.

Quality of life and cumulative incidence of SARS-CoV-2 by catchment for the period 1 March 2020 31 December 2021 during Delta and Omicron waves

Access to SARS-CoV-2 testing:
l l

Households were asked if they had tried to access testing for SARS-CoV-2 and were refused

Crowding index:

Defined as 3 or more people per functional room, expressed as the percentage of households per catchment

Degree of difficulty preventing COVID-19:

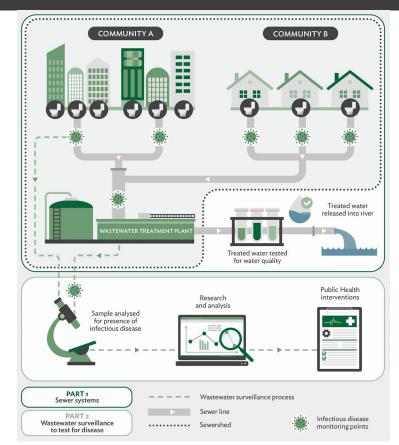
- Ability to maintain social distancing and practice preventative hygiene.
- Components include crowding, access to sanitation, water, health facilities, electronic communication and public transport
- HIGH score = RISKY

COVID-19 vulnerability:

- Risk factors that increase health and social vulnerability.
- Components include pre-existing health risk factors, difficulty saving money, face hunger, not medically insured, current poor health.
- HIGH score = RISKY

	Sewershed D	Sewershed O	p-value*
	(Std err)	(Std err)	
Population served by WWTP (# people)	215,265	905,996	
Cumulative incidence (lab- confirmed SARS-CoV-2 cases/100,000	4483.3	1,688.0	
QoL (n respondents)	375	652	
Overall index	64 (6)	59 (6)	0.008
Services	95 (1)	84 (2)	<0,001
Socio-economic status	42 (1)	29 (1)	<0,001
Government satisfaction	40 (2)	44 (1)	<0,001
Life satisfaction	64 (1)	60 (1)	<0,001
Health	74 (2)	72 (1)	<0,001
Safety	53 (1)	48 (1)	<0,001
Participation	68 (1)	75 (1)	<0,001
Tried to test for SARS-CoV-2 but were refused	4 (1)	3 (1)	<0,001
Crowding index	8 (1)	22 (1)	<0,001
COVID-19 prevention capacity	18 (0,06)	29 (0,05)	<0,001
COVID-19 vulnerability	34 (0,08)	42 (0,05)	<0,001

Daspoort has


- Less people
- Higher quality of life
- Better access to testing
- Less crowding
- More capacity to prevent SARS-CoV-2
- Lower vulnerability to COVID-19

*Student t-test

De Kadt et al, 2021 and Maree et al, 2021 Data briefs available on www.gcro.ac.za

Building a use-case scenario for WBE

- Establishing a use-case for wastewater surveillance in South Africa context we can now quantify the relationships.
- This research helps develop methods where the quality of data can be variable and difficult to connect discrete datasets on disease, demographics and socioeconomics. This makes decision making difficult during a crisis.
- Our findings provide evidence to support intuitive thinking that WBE can overcome testing biases particularly in situations where
 - Testing rates are low or
 - where clinical disease monitoring is costly, resource intensive and difficult in large communities.
- Broadly applicable to all communicable disease surveillance programmes

Outputs and activities

- 1. Academic outputs:

 - PlosONE academic paper Non-sewered wastewater surveillance
 - Spatial methods for public health
 - Vaccine hesitancy
- Large bank of research from the NICD on validation of laboratory validations of wastewater samples

2. GCRO outputs:

- Photo essay: GCRO output for September 2023 COVID-19 Vaccination MotM Vaccination Databrief

- Sets of infographics

3. QoL – bank of questions included to support work in sewersheds as well as to understand vaccine hesitancy

https://gcro.ac.za/research/project/detail/sewershe ds-wastewater-surveillance-disease-monitoring/

COLLABORATORS

TEAM

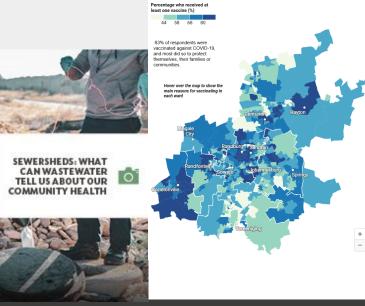
Scripps Research

GCRO Gauteng City-Region Observatory

FUNDERS

NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service

BILL& MELINDA GATES foundation



Visit <u>www.gcro.ac.za</u> for all our recent publications

COVID-19 vaccination rates and reasons for vaccinating per ward

This map shows the percentage of QoL respondents who had at least one COVID-19 vaccine by April 2024 $\,$

GCRO DATA BRIEF

COVID-19 AND VACCINE HESITANCY FINDINGS FROM THE GCRO'S QUALITY OF LIFE SURVEY 7 (2023/24)

> OCTOBER 2024 Authors Na Els, Yashera Nation and Giltan Nare

YASHENA NAIDOO

yashena.naidoo@gcro.ac.za

GCRO

+27 11 717 7280 info@gcro.ac.za

ADDRESS

6th Floor University Corner 11 Jorissen Street (Cnr Jorissen and Jan Smuts) Braamfontein Johannesburg Gauteng South Africa

POSTAL ADDRESS

GCRO Private Bag 3 Wits 2050

